Runtime Self-Adaptation in a Component-Based
Robotic Framework’

Daniel Hernandez-Sosa, Antonio C. Dominguez-Brito, Cayetano Guerra-Artal, and Jorge Cabrera-Gamez
IUSIANI (Instituto Universitario de Sistemas Inteligentes y Aplicaciones Numeéricas en Ingenieria),
Universidad de Las Palmas de Gran Canaria, Edificio Central del Parque Cientifico Tecnolégico,

Campus de Tafira, 350017, Las Palmas de Gran Canaria, Spain
{dhernandez, adominguez}@iusiani.ulpgc.es, {cguerra, jcabrera}@dis.ulpgc.es

Abstract— The development and maintenance of software for
robotic systems is a hard task due to the complexity inherent in
these systems. Besides, the resulting applications have to deal with
limited resources and variable execution conditions that must be
considered in order to keep an acceptable system performance. To
address both problems we have integrated a set of dynamic adap-
tation policies inside CoolBOT, a component oriented framework
for programming robotic systems. CoolBOT contributes to reduce
the programming effort, promoting robustness and code reuse,
while the adaptation scheme provides a dynamic modulation of
system performance to meet available computational resources
at runtime. In this paper we also present two demonstrators
that outline the benefits of using the proposed approach in the
development of real robotic applications.

Index Terms— robotic systems, self-adaptive software compo-
nents

I. INTRODUCTION

Let us imagine we are about to design and build the software
for a robot that will operate as a tactical multi-purpose system.
In order to reduce the programming effort, we will rely on
software reuse, recycling a set of well-tested components
(motion control, obstacle avoidance, mapping, path planning,
etc.), for our application. Given that the system should operate
adequately in a specific hardware equipment, several questions
arise. Once the whole system is integrated, which working
periods should we assign to the different periodic compo-
nents?. Could it be possible to impose CPU load quotas to
each subsystem in order to guarantee its execution and, at the
same time, avoiding processor overload?.

In most situations this is a test-and-error calibration process,
for having the system working conveniently, verifying its
design requirements, and above all, guarantying that compo-
nents observe their working periods. Would it be possible to
make the system to adapt automatically its configuration and
to tune its behavior in order to accommodate itself to the
available resources, avoiding this detailed and tedious process
of calibration?. Furthermore, due to the tactical conception,
the system evolves along their life cycle in a set of execu-
tion phases or contexts that demand different topologies and
configuration of components. Thus, this calibration problem
appears recurrently during system execution.

*This work has been supported by the research project P12003/160 funded
by the Autonomous Government of Canary Islands (Gobierno de Canarias -
Consejeria de Educacion, Cultura y Deportes), Spain.

So stated, our problem requires two basic contributions:
modular software reuse and dynamic adaptive control.

When strict guaranties of bounded reaction times and fre-
guencies of operation are needed, hard real-time techniques
are the obvious choice. However, there are many contexts
of application in robotics where those strict guaranties can
be relaxed to a certain extent. In these contexts, while hard
real-time off-line analysis could guarantee system’s limits for
the most demanding or worst case situations, it may result
in under-utilization of available resources during significant
periods of time. A soft real-time adaptive control scheme may;,
in our opinion, represent a more convenient solution.

The management of shared resources at low-level has not
received enough attention in robotic and sensor-effector sys-
tems research. Some authors [1][2], however, coincide in the
necessity of including the adaptive aspect in order to build
really robust systems. This is specially important in mobile
robotic systems, configured as tactical multi-objective designs
which are often affected by the shortage of resources [3].

In the context of software development for robotic appli-
cations, the complexity of programming and maintenance [2]
has promoted the proposal of architectures [4] and frameworks
[5] [6]. Following this tendency we have designed and built
CoolBOT [7] [8], a component-based programming frame-
work aimed at facilitating the development of robotic systems.

As a consequence of this analysis, we have integrated
in CoolBOT a set of mechanisms and policies aimed at
obtaining run-time system adaptability. These capabilities are
offered to the framework users as a valuable resource in the
design of robotic applications. This binomial component-based
software/adaptation has also been considered by other authors
[9] [10] in other application domains with promising results.
There are also some examples of adaptive robotic architectures
[11], but not for soft real-time frameworks.

This paper is organized in the following sections: first, in
section 11, a brief outline of CoolBOT. Then, in section Il
the integrated adaptation mechanisms are presented. Section
IV explains briefly two demonstrators. Finally, section V is
devoted to present the conclusions we have drawn from this
work.

I1. CooLBOT

CoolBOT [7] [8] is a component-oriented framework that
allows designing software in terms of composition and integra-
tion of software components. The framework provides means
to abstract, design and build these components and to compose
and integrate them hierarchically and dynamically conforming
a whole system.

In CoolBOT, components are active entities that act on their
own initiative, carrying out their own specific tasks, running
in parallel or concurrently, and are normally weakly coupled.
From this point of view, a robotic system might be seen
as a network of weakly coupled parallel and/or concurrent
components interacting asynchronously in some way. More
specifically, components are modelled as Port Automata
[12][13], a concept that establishes a clear distinction between
the internal functionality of a component, an automaton, and
its external interface, conformed by input and output ports.
Components only interact and inter-communicate externally
by means of port connections established among their input
and output ports.

The framework introduces two kinds of facilities in order
to support monitoring and control of components: observable
variables, which represent features of components that might
be of interest from outside in terms of control, or just for
observability and monitoring purposes; and controllable vari-
ables, that represent aspects of components which might be
externally controlled so, through them, the internal behavior
of a component can be modified from outside. In addition, to
guarantee external observation and control, CoolBOT compo-
nents provide by default two important ports: the control port,
¢ and the monitoring port, m, both depicted in Fig. 1. The
figure also illustrates graphically the whole external interface
of a typical component: these two defaults ports and the rest
of its input and output ports (labelled as iq, ...,in, and o1, ..., 0k
respectively). Fig. 2 illustrates a typical control loop for a
component using another component as an external supervisor.

C m external
\ / supervisor
Il\ — Ol
. . control monitoring
. / \ i s
In Ok component

Fig. 1: The control
port, ¢, and the
monitoring port, m

N

in [

Fig. 2: A typical component
control loop.

Internally all components are modelled using the same
default state automaton, the default automaton, shown in
Fig. 3, that contains all possible control paths a component
may follow. The default automaton can be always brought
externally in finite time by means of the control port to any
of the controllable states of the automaton, which are: ready,

running, suspended and dead. The rest of states are reachable
only internally, and from them, a transition to one of the
controllable states can be forced externally. The running state,
the dashed state in Fig. 3, constitutes the part of the automaton
that implements the specific functionality of the component,
and it is called the user automaton. The user automaton varies
among components depending on their functionality, and it
is defined during component design and development. Fur-
thermore, there are two pair of states conceived for handling
faulty situations during execution. One of them devised to face
errors during resource allocation (starting error recovery and
starting error states), and the other one thought to deal with
errors during task execution (error recovery and running
error states). These states are part of the support CoolBOT
provides for error and exception handling in components.

Components are not only data structures, but execution
units as well. In fact, CoolBOT components are mapped
as threads when they are in execution; Win32 threads in
Windows, and POSIX threads in GNU/Linux. In general, a
component needs for its execution at least a thread in the
underlying operating system, called the main thread. This
is the thread that executes the automaton of the component,
and it is responsible for maintaining the consistency of the
internal data structures that conform the internal state of the
whole component. Additionally, in order to make a component
more responsive, it is possible to distribute the attention of a
component on different input ports using different threads of
execution called port threads.

NSe nsg
suspended
ns
S

e
> N
nc / N\
ok ' ing \finish
w m——= running jHE— | dead
nc \ /exception
exception, / o~ /na\
D)
\\ Q@?‘E‘Tﬁ)

(j =
ok (
. (e @ ok
starting -
error running ' error
recovery attempt error e\ TECOvery
e
&
attempt’ . nsg
starting
error

Fig. 3: The Default Automaton.

CoolBOT components are classified into two kinds: atomic
and compound components.

« Atomic components that have been mainly devised in
order to abstract low level hardware layers to control
sensors and/or effectors; to interface and/or to wrap third
party software and libraries; and to implement generic
algorithms. In this way they become isolated pieces of
deployable software in the form of CoolBOT components.
Thanks to the uniformity of external interface and internal

structure the framework imposes on components, they
may be used as building blocks that hide their internals
behind a public external interface.

« Compound components are compositions of instances
of several components which can be either atomic or
compound. The functionality of a compound component
resides in its supervisor, depicted in Fig. 4, which controls
and observes the execution of local components through
the control and monitoring ports present in all of them.
The supervisor of a compound component concentrates
the control flow of a composition of components, and in
the same way that in atomic components, it follows the
control graph defined by the default automaton of Fig. 3.
All in all, compound components use the functionality of
instances of another atomic or compound components to
implement its own functionality. Moreover, they, in turn,
can be integrated and composed hierarchically with other
components to form new compound components.

Analogously to modern operating systems that provide

IPC (Inter Process Communications) mechanisms to inter
communicate processes, CoolBOT provides I nter Component
Communications or ICC mechanisms to allow components to
interact and communicate among them. CoolBOT ICC mecha-
nisms are carried out by means of input ports, output ports, and
ports connections. Communications are one of the most fragile
aspects of distributed systems. In CoolBOT, the rationale for
defining standard methods for data communications between
components is to ease inter operation among components that
have been developed independently, offering optimized and
reliable communication abstractions.

monitoring ¢ontrol

\moniloring

component

compound
component

compound
component

monitoring

CONTROL
HIERARCHY

Fig. 4: Compound components.

I11. ADAPTIVE CONTROL

A robotic application should be able to adjust its perfor-
mance as a function of either the available resources or the
resources assigned a priori. The objective is to force a smooth
degradation when resources are not enough to meet application
demands, and to allow a controlled recovery when the system
overload disappears. See [14] for a more complete description.

The CoolBOT framework provides mechanisms to support
the adaptation of component consumption of computational
resources during operation. CoolBOT adaptation mechanisms

include a graceful degradation procedure when there are not
enough resources available, and a performance status recovery
procedure whenever possible. Additional objectives are reac-
tivity, stability and coordination to avoid system imbalances.

A. Elements of System Adaptation

From the point of view of adaptation, a mission may be
decomposed into a set of phases, each one of them defined by
a configuration of components running concurrently. We will
name as computational context the configuration of compo-
nents that defines each one of these phases.

A component, whether atomic or compound, may be de-
clared as adaptive or non-adaptive. If a component is declared
as adaptive, it must publish the set of performance levels at
which it can operate. A performance level represents a trade-
of between resource consumption and quality of results (better
quality demands higher consumption). In general, CoolBOT
components which are declared as adaptive should be formu-
lated as anytime contract algorithms [15].

The integration of the dynamic adaptation of components
inside CoolBOT is designed around two controllable variables:
frequency of operation and quality level. On the frequency
axis, a supervisor can modify the period associated to any
of the components under its control, for example, increasing
their values to face CPU saturation. On the quality axis, the
supervisors can command lower qualities (sensor resolution,
accuracy of computations, exhaustiveness, etc.) to reduce CPU
load and latencies at the cost of increasing uncertainty or
decreasing results” quality. A performance level represents a
combination of quality and frequency parameters. Externally
it is not necessary to know which component configuration
corresponds to a certain level of performance. The only
condition is that these adaptation levels should be ordered in
a monotonic order according to the system load they induce.

The framework will monitor certain operation conditions,
named as adaptive observables, at run time. These include
component level measures such as period, elapsed time or cpu
time, and system level measures as computational load, battery
level or load profile. Some results from processing can also
be used as elements in adaptive control, using the observable
variable facility offered by the framework.

Depending on these measures and their reference values
some elementary adaptation commands can be triggered on
adaptive components through their control ports:

o Degrade (or Demote). Degrades a component to the

immediately lower level of performance.

« Promote. Promotes a component to its immediately upper

level of performance.

« Operate at a specific level. Brings a component to a spe-

cific level out of the levels of performance the component
accepts.

B. Control Srategies

Several control policies have been designed to organize
system adaptation. Their objectives include avoiding an un-
balanced degradation/promotion in the system, reduce settling

times and fostering stability. Due to the reduction of per-
formance associated to frequency or quality degradation, the
system always tries to restore the nominal parameter values
as soon as resource limitations disappear.

To support the low level adaptive aspects in CoolBOT we
have introduced in all atomic components a special thread
called control thread, implemented as a port thread. At a
higher level of control, adaptive aspects are provided trans-
parently by the supervisors, in compound components and at
system level.

The control sequence begins with the activation of one or
more control loops detecting adaptive observables that are out-
of their desired ranges. Whenever possible, control actions are
triggered hierarchically, local actions at component-scope first,
and, if problems persist, global actions at system-scope later.
The internal control threads are in charge of local scope, while
supervisor components operate at higher level.

We will describe now in more detail two adaptive control
strategies for controlling timeouts and system load.

1) Timeout control: Timeouts control adapts, on a hier-
archical basis, the runtime demands of shared resources in
the system in order to guarantee the specified frequencies of
operation. Firstly, period violations are detected locally inside
the time-pressured component, where the control thread gen-
erates the corresponding degradation order. To avoid systems
unbalance, however, local control actions are limited to a
scope defined by two homogeneity thresholds (minimum and
maximum degradation values). If local adaptation resources
are not enough, the component notifies the problem to upper
levels, the supervisor component, where global actions can be
executed.

2) CPU load control: The load control loop operates only
at global level. The system load is estimated and compared
with a certain reference level fixed externally. Promotion and
degradation actions are generated accordingly to maintain the
desired load level.

Candidate selection for targeting control actions plays an
important role in adaptation performance. In general, an agree-
ment between reactivity and stability must be reached. The
most intense reactions are obtained when one or more of the
following conditions are met:

« High frequency components.

« CPU demanding components.

« Multiple destination source components.
« High-resolution sensor components.

The supervisors evaluate these parameters as well as priority
to select target components for adaptation commands. An
example of conservative policy consist in selecting always the
least degraded component among the lowest priority ones for
degradation, and the most degraded among the highest priority
ones for promotion, applying only a minimum-step control
(one performance level jump on each command).

The clear separation of control, processing and communi-
cation areas inside facilitates the implementation promoving
and preserving modularity in robotic applications.

IV. DEMONSTRATORS

In order to illustrate the operation of the adaptation mech-
anisms on real-world applications, we have implemented two
demonstrators: a visual tracking system and a mobile robotic
application. As it will explained next each one of them has
been integrated using a set of CoolBOT components.

A. First Demonstrator: A Tracking System

The first demonstrator consists in a correlation-based track-
ing system for a robotic head. A USB web-cam (3Com
HomeConnect) has been mounted on a pan-tilt capable neck
(DirectedPerception PTU) controlled via serial port.

The goal of the application is to detect first, and keep
centered on the image then, a certain pattern. A correlation-
based measure [16] is used to localize the target on the image.
Simultaneously, the system must perform additional feature
extraction (grey-level variance, color detection) on images.
The application is organized in the following four components:

« Vision server. Atomic component to control the robotic
head and serve images to the consumer components.

« Tracking. Compound component that processes image
data using a correlation algorithm to generate commands
for panftilt unit. It includes three atomic components
that endow the component with three different behaviors:
“Normal Tracking”, “Active Searching” and “Passive
Searching”.

« Color-Based Object Detection. Atomic component that
executes a color-based object detection algorithm on
image data.

« Variance. Atomic component that computes the variance
feature from image data.

During execution all components are active, with the track-
ing component switching between three operation modes asso-
ciated to its internal atomic components: “Normal Tracking”,
“Active Searching” and “Passive Searching”. For explanation
purposes we will assign these modes to global system phases
or computational contexts. The Fig. 5 shows the configuration
of components and interconnections for this demonstrator.

We will show here only the adaptation results associated
to the “Normal Tracking” computational context. Fig. 6 il-
lustrates the evolution of the adaptive observable system load
when different reference levels are commanded. Initially there
is no limit so all components execute at their maximum
performance level (this represents a 60% of system load).
Around 60 seconds the system load reference is set to 30%,
and degradation orders are issued from the supervisor to
components until this level is reached. Around 130 seconds
the reference level is increased to 40% and some components
are allowed to promote. After that (200 seconds approx.) a zero
reference level is commanded, which drive all components to
its maximum degradation levels (this results in about a 15%
of system load). Finally some performance recovery is tested
again moving the reference level to 30% and 40%.

This result is obtained by applying several computational
adaptation mechanisms. For example, in the case of the track-
ing component they are all quality-oriented: multiple image

Vision
Server

images/

Object
Detection

Fig. 5: Components making up the first
demonstrator.

resolutions, different correlation pattern sizes and multiple
searching areas. Additionally, variable resolution and fre-
quency of operation can be modified in the feature extraction
components, allowing for the modification of computational
demands. Sensor component can also be configured to produce
variable resolution image data to affect system load.

Regarding strategies, in case of overload, the adaptation try
to degrade first color detection and variance components, and
later, the tracking component. When conditions for system
performance recovery are met, the higher priority tracking
component promotes first and secondary feature extraction
components later.

l— System Load — Averaged l

0 1 i T T
0 50000 100000 150000 200000 250000 300000 350000 400000

Time (ms)

T T T T

Fig. 6: System load with CPU global control activated

B. Second Demonstrator: Mobile Searching Robot

The second demonstrator mounts the mechanical head de-
scribed on the previous application on a mobile robot (Pio-
neer). A notebook has been added for running the application,

being connected via USB and serial ports to the head and
the robot. Fig. 7 shows the hardware platform used for this
experiment.

A minimal multi-
purpose system has been
designed combining two
main objectives, line
following and object
detection, that can be
prioritized alternatively.
In the configuration used
for this demonstrator,
the robot must follow,
as tight as possible, a
trajectory defined by a
line traced on the floor.
At the same time, the robot must look at both sides of the
route trying to detect some colored balls. The first task is
considered to have a higher priority than the second one, so
the adaptation strategy operates modifying the frequency of
execution and quality level of the object detection task.

Four CoolBOT components have been used in the integra-
tion of the system corresponding to this second demonstrator:
one for controlling the Pioneer robot, other one for the PTU
unit and the camera, another one for line following, and the
last one for object detection. Note that some of the components
has been also used in the previous demonstrator.

As configured, on straight-line trajectory segments both
tasks can perform alternatively at a pre-defined frequency.
On curved segments, however, the risk of loosing the track
increases. To avoid this, the movement amplitude and activa-
tion period of the object detection component is modulated
according to an adaptive observable computed from the cur-
vature of the line that the robot must follow. The modification
of the scanning amplitude can be considered a quality-based
adaptive control, as processing times are shortened at the
cost of reducing the probability of finding color objects.
The modification of the period, however, corresponds to a
frequency-based adaptive control.

The Fig. 9 represents the executions of the color detection
component task along the trajectory. On curved segments, both
frequency and amplitude of scanning take lower values. On
straight segments both parameters can increase their values.

In this experiment different priorities configurations can be
used, leading to alternative robot behaviors. For example, if
object color searching becomes the priority task, it is the robot
velocity the variable that is conditioned by the amplitude of
the gaze scanning movement.

Fig. 7: Mobile robot and active
camera.

V. CONCLUSIONS

In this paper, the runtime adaptation mechanisms available
in CoolBOT have been presented. In CoolBOT, the control
of shared resources has been integrated in the facilities of-
fered by the framework. If this capacity, is to be used by
the programmer, components must be declared adaptive and
designed with adaptation capabilities. Adaptive components

itoring/control

Vision
Server

i gaze'
Object
pose/
data

Detection
@

Fig. 8: Components making up the second
demonstrator.

monitoring/.
control

Following

fitoring/control

can coexist with non-adaptive components without problems.
These adaptation mechanisms allows the system regulate the
load that a computational context may provoke on the system
or can be used to make room for new components when
the computational context changes. The objective has been
to introduce mechanisms that must avoid uncontrolled degra-
dation of the system in high load situations, paving the road
to achieve more robust systems.

CoolBOT’s adaptation mechanisms can’t guarantee real-
time performance nor have been conceived with that objective
in mind. Instead, the goal was to guarantee the stability of a
tactical system, avoiding uncontrolled degradation of system’s
performance in situations of overloading. In accomplishing
this goal, the adaptation mechanisms must allow the system
to respect tasks’ deadlines or frequency of operation, while at
the same time trying to make the best usage of heterogeneous
shared resources without demanding specialized tools like
real-time systems. Finally, two demonstrators illustrate the
effectiveness of the proposed mechanisms on different real-
world applications.

Colour detection module

) f f t i i

8 } i j £ i i H |

7 + : + 4 H H i i

o © + v i ¢ H + +
g s ! i i | i i i
= H L i H H i i H
E— 3 } | } 4)
> i ! i H
< 5 : H 1 | |
o + + + + 1 + + + + 1

1 6 11 16 21 26 31 36 41 46 51

Time (seg.)

Fig. 9: Color detection component execution chronogram.

[1]
[2]

[3]
[4]

[5]

[6]

[7]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

R. R. Murphy, Introduction to Al Robotics. The MIT Press, 2000.

D. Kortenkamp and A. C. Schultz, “Integrating robotics research,”
Autonomous Robots, vol. 6, pp. 243-245, 1999.

S. D. Jones, “Robust task achievement,” Ph.D. dissertation, Institut
National Polytechnique de Grenoble, 1997.

E. Coste-Maniere and R. Simmons, “Architecture, the Backbone of
Robotic Systems,” Proc. IEEE International Conference on Robotics and
Automation (ICRA’00), San Francisco, 2000.

S. Fleury, M. Herrb, and R. Chatila, “G®"oM: A Tool for the
Specification and the Implementation of Operating Modules in a
Distributed Robot Architecture,” in Proceedings of the IEEE/RS)
International Conference on Intelligent Robots and Systems (IROS),
Grenoble, Francia, September 1997, pp. 842-848. [Online]. Available:
citeseer.nj.nec.com/fleury97genom.html

C. Schlegel and R. Worz, “Interfacing Different Layers of a Multi-
layer Architecture for Sensorimotor Systems using the Object Oriented
Framework SmartSoft,” Third European Workshop on Advanced Mobile
Robots - Eurobot 99. Zirich, Switzerland, September 1999.

A. C. Dominguez-Brito, D. Herndndez-Sosa, I.-G. Josep, and J. Cabrera-
Gamez, “Integrating robotics software,” IEEE International Conference
on Robotics and Automation, New Orleans, USA, April 2004.

A. C. Dominguez-Brito, “CoolBOT: a Component-Oriented Program-
ming Framework for Robotics,” Ph.D. dissertation, Dpto. Informéatica y
Sistemas, Universidad de Las Palmas de Gran Canaria, September 2003.
D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and P. Steenkiste,
“Rainbow: Architecture-based self-adaptation with reusable infrastruc-
ture,” Computer, vol. 9162, no. 10, pp. 46-54, October 2004.

P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimbigner, G. Johnson,
N. Medvidovic, A. Quilici, D. S. Rosenblum, and A. L. Wolf, “An
architecture-based approach to self-adaptive software,” |IEEE Intelligent
Systems, vol. 14, no. 3, pp. 54-62, May/Jun 1999.

D. J. Musliner, R. P. Goldman, M. J. Pelican, and K. D. Krebsbach, “Self
adaptive software for hard real-time environments,” IEEE Intelligent
Systems, vol. 14, no. 4, pp. 23-29, July/August 1999.

M. Steenstrup, M. A. Arbib, and E. G. Manes, “Port automata and
the algebra of concurrent processes,” Journal of Computer and System
Sciences, vol. 27, pp. 29-50, 1983.

D. B. Stewart, R. A. \Volpe, and P. Khosla, “Design of dynami-
cally reconfigurable real-time software using port-based objects,” IEEE
Transactions on Software Engineering, vol. 23, no. 12, pp. 759-776,
December 1997.

D. Hernandez-Sosa, “Adaptacion computacional en sistemas percepto-
efectores. Propuesta de arquitectura y politicas de control,” Ph.D.
dissertation, Universidad de Las Palmas de Gran Canaria, 2003.

S. Zilberstein, “Using anytime algorithms in intelligent systems,” Al
Magazine, vol. 17, no. 3, pp. 73-83, 1996.

C. Guerra-Artal, “Contribuciones al seguimiento visual precategérico,”
Ph.D. dissertation, Universidad de Las Palmas de Gran Canaria, 2002.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobePiStd
 /CenturySchL-Bold
 /CenturySchL-BoldItal
 /CenturySchL-Ital
 /CenturySchL-Roma
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /Dingbats
 /NimbusMonL-Bold
 /NimbusMonL-BoldObli
 /NimbusMonL-Regu
 /NimbusMonL-ReguObli
 /NimbusRomNo9L-Medi
 /NimbusRomNo9L-MediItal
 /NimbusRomNo9L-Regu
 /NimbusRomNo9L-ReguItal
 /NimbusSanL-Bold
 /NimbusSanL-BoldItal
 /NimbusSanL-Regu
 /NimbusSanL-ReguItal
 /StandardSymL
 /URWBookmanL-DemiBold
 /URWBookmanL-DemiBoldItal
 /URWBookmanL-Ligh
 /URWBookmanL-LighItal
 /URWChanceryL-MediItal
 /URWGothicL-Book
 /URWGothicL-BookObli
 /URWGothicL-Demi
 /URWGothicL-DemiObli
 /URWPalladioL-Bold
 /URWPalladioL-BoldItal
 /URWPalladioL-Ital
 /URWPalladioL-Roma
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

